Are whole-exome and whole-genome sequencing approaches cost-effective?

Yesterday, we published an article in Genomics in Medicine titled: “Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature”. The lead author for this work was Katharina Schwarze, who spent several months at HERC working on a project related to the costs of whole genome sequencing.

The aim of this particular piece of work was to summarise the current health economic evidence for whole-exome sequencing (WES) and whole-genome sequencing (WGS). The key finding was that the current health economic evidence base to support the more widespread use of WES and WGS in clinical practice is very limited. Other important findings include the following:

  • Cost estimates for a single test ranged from $555 to $5,169 for WES and from $1,906 to $24,810 for WGS.
  • There was no evidence that the cost of WES was falling over time, and only limited evidence that the cost of WGS was decreasing.
  • Few studies used outcome measures recommended for use in economic evaluations, such as survival or quality of life.
  • Only eight publications were full economic evaluations, of which only five produced evidence that WES or WGS may represent a cost-effective use of limited health-care resources.

We conclude by making four practical recommendations:

  1. Future studies should report costs by stage of testing for WES and WGS and highlight particularly notable costs, as it is currently difficult to identify key cost drivers.
  2. Future studies should report resource use and unit costs in a disaggregated manner to aid interpretation.
  3. Future studies evaluating the cost-effectiveness of WES or WGS should use calculated costs instead of prices, to better capture the economic value associated with WES and WGS, and to avoid incorrect and inefficient adoption decisions.
  4. Future studies of the cost-effectiveness of WES and WGS should include trained health economists as coinvestigators to improve study quality.

This paper challenges a number of assumptions in the literature and in the wider conversation regarding the cost and potential value of next generation sequencing technologies. I hope you’ll read, share, and debate these findings!

Medicine’s future? The health economics of population-wide genomic screening

The latest issue of Science contains an interesting and lengthy article on how Geisinger are trying to integrate genomic screening into routine care in Pennsylvania, USA. Although this is an exciting area of research, and the business model surrounding these innovative approaches to genomic sequencing is quite interesting, I have a number of reservations about the cost-effectiveness of population-wide genomic screening.

Continue reading

Whole genome sequencing costs – a step in the right direction

It is now well documented that health economic evidence to inform commissioning decisions regarding genomic tests is in short supply. This lack of evidence relates to both costs and health outcomes – there is perhaps an understandable tendency to focus on the issues surrounding the measurement of health outcomes in genomics, but data on costs is equally sparse and the generation of such data is also beset by practical and methodological challenges. That said, in the past twelve months we have started to finally see some good quality data emerging on the costs of whole genome and whole exome sequencing, and a recent paper by Kate Tsiplova and colleagues has made a notable contribution to this literature.

Continue reading

What are people willing to pay for whole genome sequencing information?

Given the wide variety of health and non-health outcomes associated with genomic tests, it is perhaps particularly important that the preferences of key stakeholders are considered within the health technology assessment process for these interventions. Indeed, in a paper published last year, Rogowski et al. highlight the importance of ‘preference-based personalization’ in this context. To date, few studies have generated data on preferences for genomic tests. However, a recent publication in Genetics in Medicine by Deborah Marshall and colleagues has attempted to address this gap in the literature.

Continue reading

Health economic perspectives of genomics

Just a quick note to say that a book titled “Genomics and Society; Ethical, Legal-Cultural, and Socioeconomic Implications” was published today (available on Amazon here).

731396

In this book you can find a chapter that I co-wrote with Dr Sarah Wordsworth from HERC and Professor Adrian Towse from the Office of Health Economics titled “Health economic perspectives of genomics”. You can read the chapter via Google Books here, and you may also be able to download a copy here, depending on your institutional access. I hope it is of interest.

The $1000 genome is a myth

Barely a day goes by without a news story or social media post proclaiming that the $1000 genome now exists, and is ushering in a healthcare revolution. Every day, somebody, somewhere in the world, posts these graphs on Twitter. There’s even a Wikipedia page devoted to this topic. It’s a persistent news headline and, frustratingly, it’s currently wrong. Continue reading

What are the real costs of sequencing?

I normally steer well clear of the topic of sequencing in newborn babies because this area raises so many social, legal and ethical questions that go way beyond the clinical/economics perspective that we’re used to considering. However, I read an interesting commentary piece the other day by Jacques Beckmann titled ‘Can we afford to sequence every newborn baby’s genome?’ which I think deserves a wider audience for two reasons. One, it reminded me of a comment that Professor Sir John Burn (director, NHS England) made during the recent Astellas Innovation Debate in London. Jonathan Dimbleby asked if he could see whole genome sequencing (WGS) being rolled out to everyone across the UK, to which he replied: “the reality is that even when we get the 100,000 Genomes Project fully operational and get it absorbed, we’ll only be doing maybe 30,000-50,000 whole genomes a year – we’d have to do 600,000 a year to catch up with the new babies”. Second, I think there are some points raised in this article that go beyond newborn screening and are directly applicable to the economic evaluation of genomic testing in a variety of clinical contexts.

Continue reading